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1. Introduction
1.1 Motivation
We investigate the dynamic properties of a rotary pendulum under the influence of damping
and external excitation. Resonance phenomena are important in many physical systems, as
they can lead to a sharp increase in amplitude if the excitation frequency corresponds to the
ressonant frequency of the system. Understanding these effects is therefore fundamental to
physics. The aim of the experiment is to analyze the behavior of a mechanical resonator under
different conditions and to investigate the characteristics of free and forced oscillations as well as
the effects of damping on the resonance curve.

1.2 Measurements
In this experiment, the oscillation behavior of a rotary pendulum is investigated and in particular
the resonance phenomena. The pendulum is first allowed to swing freely in order to measure
the undamped period of oscillation. It is then damped with an eddy current brake and the
damping constant is determined. Finally, the pendulum is excited by an external force in order
to investigate the dependence of the oscillation amplitude on the excitation frequency and
to generate resonance curves. The influence of the damping on the resonance frequency, the
maximum amplitude and the half-width of the resonance curve is analyzed.

1.3 Basics
1.3.1 Free Oscillation
In a free, damped oscillation, the amplitude of the oscillation decreases exponentially due to
energy losses (e.g. through friction). The movement of the system can be described by the
following equation:

a(t) = a0e−δt sin(ωf t) (1.1)

Here is a0 the initial amplitude, δ is the damping constant and ωf is the angular frequency of the
damped oscillation.

1.3.2 Damping constant
The damping constant δ can be determined experimentally by plotting the amplitude of the
oscillation logarithmically over time:

δ = ln(2)
t1/2

(1.2)

where t1/2is the time in which the amplitude has fallen to half its original value.
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1.3.3 Forced oscillation
If an external periodic force is exerted on the system, this is referred to as forced oscillation. In
this case, the amplitude of the oscillation depends strongly on the frequency of the external force
and reaches its maximum when the excitation frequency corresponds to the natural frequency of
the system. This is described by the resonance curve:

b(ω) = Aω2
0√

(ω2
0 − ω2)2 + (2δω)2

(1.3)

Here is ω0 the natural frequency of the undamped system, ω is the excitation frequency, and A

is the amplitude of the excitation.

1.3.4 Resonant frequency
The resonant frequency ω′ at which the amplitude is maximal can be determined by :

ω′ =
√

ω2
0 − 2δ2 (1.4)

In real systems, this frequency deviates only slightly from the undamped natural frequency.

1.3.5 Half-width
The half-width H of the resonance curve, which describes the width of the curve with not to
strong damping at height b(ω′)√

2 is given by:

H = 2δ (1.5)
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2. Means of Measurement
2.1 Measurements

Measurement protocol 3
. 9 .2024

Jonathan Rodeners, Theodora Lazareic

Experiment 13
- Resonance

1measurement setup :
-rotary pendulum (Pohl's wheel)

, stimulated by
a stepper motor with an eccentric

- stepper motor drive with power supply
- function generator
- power supply unit for the eddy current brake

2
.
Sketchi

I

O·&
Table 1 : Determination of the oscillation period to of an undamped

free rotary pendulum

Nr . measurement 120 Oscillations) [S] To (s) ↑ (s) of (s)
36

,
17 1 ,81

2 I 36
,
23 I 1,81 1 ,810 ,00

36 , 27 1,81

inaccuracy caused by raction time: ATo=0.2T
=
Al = 0.013

Table 2 : Determination of the transient time for different damping

damping currentl
Oscillations measured time [S3 Oscillation period Tfds] T+b)

340 15 26
,
08 1, 74 0,023

C

448 10 I 17,92 7, 79 0,02

reading error A = 20mA

we can't set the current precisely !
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Table 3 : deflection for 340 mA reading error : ideflection=0,2

Nr. 1 2 3 4 56 7 8 9

deflection
15,2 12,410 ,38 ,56 ,95 ,

6 4, 6 3 ,8 3, 0

15 ,712 ,510 ,
38 ,46,95 ,7 415 3 ,82.9

mean 15,272 ,510,38 ,56 ,9574 ,63,83
,
0

Omean 05 0 .05 00 ,05 00 ,05 0 ,05 0 0
,
05

10 11727374 15

2 , 4 1 ,91 14 70 0 , 7 0 , 4

deflection 2
,4 11 8 1 , 4 110 Q8 0

.4

mean 2
, 4
1 ,91 ,41 ,00 .80.4

Ouean O
0,05 0 O 0,05 6

Table 4 : deflection for 640 mA

Nr. 1 2 3 4 5 6 7 8 910

deflection 13 ,49 ,46 ,8
3
,42 ,315 0 .9 0 .5 0 ,2

I 13,49 .56 .
83

, 4 2
, 4 1 ,5 0 .90,4

0, 2

mean 13,4 9
.
5 6 .8 4,9 3, 4 2 . 4 1,5 0

.
90 .50, 2

Omean 0 0 ,05 0 0
.10 0.05 00005 0
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Table 5 : stationary amplitude for

fir I= 340 mA I = 440 mA

total frequency amplitude amplitude

300 0
,
3 0130

500 0,35 0,30

700 0,35 0, 35

900 ! 0, 4 I 0 . 40 I1100 0,45 0
.50

1300 0
.55 0,55

1500 0,70 0
. 70

1700 1
,05 1, 00

1850 I 2
,
00 I 11 70 I1900 2
,60 2 ,08

1950 3 , 50 2,30

2009 4 ,70 2
, 65

2050 4
,
20 2

,
50

2100 2
,
70 2 , 00

2150 2,10 1, 70

2350 0
.90 0, 90

2550 0
,60

2750

I
0
.40 i 05 I openi

uncertainty of function generator frequency : 18: 5 Hz

reading error : 0,2

I
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3. Evaluation
3.1 Determination of T0

We determine the period of oscilation by the following formula:

T0 = T

n
(3.1)

where T is the mean of the measured times, and n is the number of oscillations measured. In
this case 20.

The uncertanty of the period time is calculated by:

∆T0 =
√

∆T 2
clock + ∆T 2

stat (3.2)

Whereby ∆Tclock is the uncertanty of the stopped time, divided by 20. And ∆Tstat is the standart
error of the mean.

With this we get a value of:

T0 = (1, 81 ± 0, 01)s

f0 = (0, 552 ± 0, 003)Hz

3.2 Determination of the damping constant

The Values of the Table 1 are plotted on a logarithmic scale, as a function of the number of
oscillations.

From this we can get:
n1 = (2, 6 ± 0, 1) and n2 = (1, 5 ± 0, 1)

Using Formula 1.2 and
t1/2 = T · n1/2 (3.3)

where t1/2 is again the time in which the amplitude has fallen to half its original value, T is the
oscillation period and n1/2 is the Number of Oscillations it took, to half the Amplitude.

We obtain:
δ1 = (0, 15 ± 0, 06)1

s
for 340mA

and
δ2 = (0, 26 ± 0, 02)1

s
for 440mA

The error can be calculated with:

∆δ =

√√√√( − ln(2)
T 2 · n1/2

· ∆T

)2

+
(

− ln(2)
n2

1/2 · T
· ∆n1/2

)2

(3.4)
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3.3 Period of Oscillation of dammed Penduluum
From Diagram 2 we can determine the frequency at which the Amplitude is highest, therefore it
is the ressonante frequency.
In both cases this value is around 2010 ± 25 Hz, considering the factor 1

4000 which is needed for
the stepper motor frequency, this concludes to:

f1 = (0, 5025 ± 0, 006)Hz

3.4 Further Methods of evaluating the damping constant
With:

ω0 = 2π

T
(3.5)

where ω0 is the angular frequency of the undamped oscillaiton and T the period of Oscillation of
the undamped and using formula 1.3.3 we can calculate the damping constant.
We get the following equation for δ:

δ = ω0 · b(ω → 0)
2b(ω′) (3.6)

where ω′ is the angular frequency of the measured peak, therefore b(ω′) the amplitude value of
the peak. For b(ω → 0) we use our closest measument which was 0,3.
The error here can be calculated using:√(

b(ω → 0)
2b(ω′) · ∆ω0

)2
+
(

ω0
2b(ω′) · ∆b(ω → 0)

)2
+
(

−ω0b(ω → 0)
2b(ω′)2 · ∆b(ω′)

)2
(3.7)

whereby ∆b(ω′) and ∆b(ω → 0) can be calculated using the added squares of the reading errors
from the amplitude scale and the reading error from where the peak is and ∆ω0 can be caltulated
by:

∆ω0 = 2π
∆T0
T 2

0
(3.8)

Another method is using the Half-width H
This can be done using the formula 1.3.5 and reading the values for H from the Diagram 2 and
then calculate the damping constant.

Damping value from diagram for H real H

340mA (180 ± 25)Hz (0, 283 ± 0, 039) Hz
440mA (270 ± 25)Hz (0, 424 ± 0, 039)Hz
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3.5 Values of δ
Damping in [mA] δa in [Hz] δb in [Hz] δc in [Hz]

340 0, 15 ± 0, 06 (0, 14 ± 0, 02) (0, 11 ± 0, 03)
440 0, 26 ± 0, 02 (0, 21 ± 0, 02) (0, 20 ± 0, 07)

δa = first method, δb = Half-Width, δc = resonance amplification

3.6 Z-Values of Pairs of δ
Damping in [mA] σa,b in σ σb,c in σ σa,c in σ

340 0,158 0,831 0,596
440 1,768 0,137 0,824

4. Conclusion
In the first part of this experiment, we measured the period of an undamped rotary pendulum
and were able to deduce a natural frequency of f0 = (0.552 ± 0.003)Hz.

We then damped the pendulum and determined the natural frequency again using a resonance
curve. This was now f1 = (0.5025 ± 0.006)Hz. Here one can clearly see that the damping has
increased the period duration and thus reduced the frequency.

It should be noted that we have obtained these two values using a different method and although
a comparison is permissible, it is not as meaningful as a comparison of two numbers that were
determined using the same method.

The Z-value of these two values is 7.3σ, which is why we can assume a significant difference,
which one can present as well.

Furthermore, in this experiment we used several different methods to determine the damping
constant of the rotary pendulum.

We were able to determine that all methods yielded values with a deviation of < 2σ. This means
that every method is valid.
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